Современные инновационные тенденции в северных регионах и корпорациях

Владимир Степанович Селин 1, Вячеслав Александрович Цукерман 2, Елена Сергеевна Горячевская 3

1 Институт экономических проблем им. Г. П. Лузина Кольского научного центра Российской Академии Наук, Апатиты, Россия 184209, Апатиты, Мурманская область, ул. Ферсмана, 24а
E-mail: silin@iep.kolasc.net.ru, tsukerman@iep.kolasc.net.ru

Аннотация

Цель: Целью исследования является анализ, выявление и структурирование основных тенденций технокно-технологического развития регионов и корпораций на российском Севере.

Методология проведения работы: Для достижения поставленной цели используются методы факторного и системного анализа, общеэкономические подходы. Для структурирования процессов серьезное значение имеет, особенно в условиях высокой степени изоморфизма территорий, методический инструментарий показателей и индикаторов. Учитывая высокую степень неопределенности хозяйственных процессов на Севере, наличие большого числа рисков и угроз, в отдельных случаях применяются экспертные методы и контент-анализ.

Результаты работы: К основным результатам исследования можно отнести выявление сравнительно высокой степени инновационной активности организаций в регионах Крайнего Севера, в промышленном секторе имеющих преимущественно ресурсо-сырьевую ориентацию. Обоснована необходимость усиления технокно-технологических преобразований в связи с усилением «санкционной» политики Запада. Импортозамещение, особенно в сферах обеспечения экономической безопасности, становится, по существу, императивом.

Выводы: В стратегической перспективе промышленный комплекс северных регионов будет обеспечивать углеродную индустриализацию заказами на высокотехнологичные материалы и оборудование, необходимые для освоения Арктического шельфа. Определенную научную новизну представляет вывод о том, что северные регионы и корпорации обладают инновационным спросом и финансовым потенциалом, поэтому, несмотря на преимущественно сырьевую направленность, могут стать своеобразным «донором» инноваций на Севере, где на федеральном уровне обоснована необходимость поддержки исследовательского сектора, а на региональном – усиление внимания к системе общего и среднего специального образования.

Ключевые слова: развитие, инновации, Север, регионы, корпорации, угрозы, технологии, факторы, анализы, Арктина, шельф

Благодарность: Статья подготовлена в рамках работы по проекту «Развитие науки и технологии в развитых и крупных развивающихся странах: тенденции и перспективы» программы Президиума РАН «Анализ и прогноз долгосрочных тенденций научного и технологического развития: Россия и мир» (№07-70-2013-0016)

© Селин В. С., Цукерман В. А., Горячевская Е. С., 2017

Modern Innovation Trends in the Northern Regions and Corporations

Vladimir S. Selin 1, Vyacheslav A. Tsukerman 2, Elena S. Goryachevskaya 3

1 Institute Luzin Institute for Economic Studies of the Kola Science Centre of Russian Academy of Sciences, Apatity, Russian Federation
24a, Fersman street, Apatity, Murmansk region, 184209
E-mail: silin@iep.kolasc.net.ru, tsukerman@iep.kolasc.net.ru

Submitted 10.09.2017; revised 01.11.2017; published online 29.09.2017

698
Введение

Целью проводимого исследования является анализ, выявление и структурирование основных тенденций технико-технологического развития регионов и корпораций на российском Севере.

Материалы и методы. Для достижения поставленной цели используются методы факторного и системного анализа, общекономические подходы. При структурировании процессов, особенно в условиях высокой степени изоморфизма территорий, используется методический инструментарий показателей и индикаторов. Учитывая высокую степень неопределенности хозяйственных процессов на Севере, наличие большого числа рисков и угроз, в отдельных случаях применяются экспертные методы и контент-анализ.

Результаты исследования

Современное экономическое развитие, достижение устойчивого экономического роста во многом базируется на процессах создания и реализации новейших научно-технических разработок, которые неразрывно связаны с необходимостью модернизации экономики страны. О возможности перехода России от ресурсно-экспортной к ресурсо-инновационной модели развития и сохранения технологического разрыва с промышленно развитыми странами говорит не только в научных кругах, но и на правительственном уровне. В последнее время утверждены новые документы: Стратегия инновационного развития Российской Федерации на период до 2020 года 1 и Государственная программа Российской Федерации «Развитие науки и технологий на 2013–2020 годы» 2. Необходимость перехода к инновационно-ресурсной модели развития особенно возрастает в последнее время, в связи с объявлением Западом «войной санкций». Такая модель должна в первую очередь быть направлена на повышение емкости внутреннего рынка и обеспечение его восприимчивости к инновациям.

Что характерно абсолютно для всех северных регионов, так это индустриальная модель их экономики, отличающаяся повышенным удельным весом промышленного производства [1–4]. На Севере и в Арктике сосредоточены крупные промышленные ресурсные корпорации страны. В северных регионах производится 2/5 производства ВВП, 17% промышленной продукции, на них приходится 1/3 инвестиций в основной капитал и около 60% экспорта природных ресурсов в виде валютных поступлений [5].

К регионам Севера и Арктики отнесены субъекты РФ, которые полностью включены в Арктическую зону Российской Федерации и в территории Крайне-
него Севера: Мурманская область, Ненецкий АО, Ямало-Ненецкий АО, Республика Саха (Якутия), Магаданская область, Чукотский АО, Камчатский край.
Одно из ключевых направлений экономического развития России — производство электроэнергии, газа и воды. По данным Росстата, в 2015 году в России было произведено более 1,5 трлн кВт·ч электроэнергии, более 480 млрд куб. м газа и более 1,2 млрд м3 воды.

Данные о структуре валовой добавленной стоимости по видам экономической деятельности в 2015 году приведены в таблице 1.

<table>
<thead>
<tr>
<th>Таблица 1</th>
<th>Structure of gross value added by types of economic activity in 2015 (in current prices, as a percentage of the total)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Добыча полезных ископаемых</td>
</tr>
<tr>
<td>Мурманская область</td>
<td>14.7</td>
</tr>
<tr>
<td>Ненецкий АО</td>
<td>67.5</td>
</tr>
<tr>
<td>Ямало-Ненецкий АО</td>
<td>54.9</td>
</tr>
<tr>
<td>Республика Саха (Якутия)</td>
<td>48.2</td>
</tr>
<tr>
<td>Магаданская область</td>
<td>28.9</td>
</tr>
<tr>
<td>Чукотский АО</td>
<td>46.5</td>
</tr>
<tr>
<td>Камчатский край</td>
<td>4.9</td>
</tr>
<tr>
<td>Российская Федерация</td>
<td>11.2</td>
</tr>
</tbody>
</table>

3 Указ Президента РФ от 2 мая 2014 г. № 296 «О сухопутных территориях Арктической зоны Российской Федерации», Постановление Совета СССР от 03.01.1983 № 12 (ред. от 03.03.2012) «О внесении изменений и дополнений в Постановление Совета Министров СССР от 10 ноября 1967 г. № 1029» (вместе с «Постановлением Совета Министров СССР от 10 ноября 1967 г. № 1029» (вместе с «Перечнем районов Крайнего Севера и местностей, признанных для целей применения законодательства Российской Федерации на территории севера») признаны утратившими силу в связи с изданием Указа Президента РФ от 30.03.2012 № 296 «О сухопутных территориях Арктической зоны Российской Федерации») и Указа Президента РФ от 02.02.2012 № 132 «О признании утратившими силу некоторых актов Президента РФ».

показатели. Максимальное число используемых технологий в Ямало-Ненецком АО.
С учетом действия западных санкций северные предприятия должны усиливать творческие и хозяйственные связи с образовательными, научными и опытно-конструкторскими организациями.
Другие пропорции отмечаются по числу разработанных передовых производственных технологий (табл. 3).
По числу разработанных передовых производственных технологий регионы Севера и Арктики отстают от среднероссийских показателей. Число разработанных технологий в регионах значительно ниже показателей используемых. Это говорит, что в основном технологии покупаются в других регионах и за рубежом. Проведенный анализ показал, что один из самых «сложных» мест в инновационном развитии является недостаток кадров специалистов «среднего» звена. Это связано с отсутствием технических колледжей этого профиля, и несерьезным отношением таких специалистов к работе в регионах Севера в связи с относительно низким уровнем зарплаты.
Разработка политики инновационного развития регионов опирается на следующие положения:

<table>
<thead>
<tr>
<th>Таблица 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Используемые передовые производственные технологии на 10 тыс. человек населения, ед.</td>
</tr>
<tr>
<td>Table 2</td>
</tr>
<tr>
<td>Used advanced production technologies for 10 thousand people, units</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>Мурманская область</td>
</tr>
<tr>
<td>Ненецкий АО</td>
</tr>
<tr>
<td>Ямало-Ненецкий АО</td>
</tr>
<tr>
<td>Республика Саха (Якутия)</td>
</tr>
<tr>
<td>Магаданская область</td>
</tr>
<tr>
<td>Чукотский АО</td>
</tr>
<tr>
<td>Камчатский край</td>
</tr>
<tr>
<td>Российская Федерация</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Разработанные передовые производственные технологии на 10 тыс. человек населения, ед.</td>
</tr>
<tr>
<td>Table 3</td>
</tr>
<tr>
<td>Developed advanced production technologies for 10 thousand people, units</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>Мурманская область</td>
</tr>
<tr>
<td>Чукотский АО</td>
</tr>
<tr>
<td>Ямало-Ненецкий АО</td>
</tr>
<tr>
<td>Республика Саха (Якутия)</td>
</tr>
<tr>
<td>Магаданская область</td>
</tr>
<tr>
<td>Чукотский АО</td>
</tr>
<tr>
<td>Камчатский край</td>
</tr>
</tbody>
</table>

интенсификация стратегического управления, совершенствование производственных и научно-технических возможностей, активизация финансово-хозяйственной деятельности [6]. Для северных регионов необходимо формирование слабо расширенной инновационной стратегии развития, направленной на реализацию передовых технологических укладов, создание эффективной инфраструктуры, активизацию инновационного процесса и использования современных коммуникационных и информационных технологий 5.

В табл. 4 приведены рейтинги крупных ресурсных корпораций, предприятий и филиалов которых работают в северных регионах.

Лидирующее положение среди ресурсных корпораций страны занимает ПАО «Газпром», основные сырьевые объекты которого расположены в Ямало-Ненецком автономном округе. Оно располагает мощной сетью исследовательских и технологических центров, в последние годы значительно расширяющихся. Большое внимание уделяется снижению издержек с широким применением зарубежного опыта [7], где добывающие фирмы реализуют взаимовыгодное сотрудничество с государством. Очевидно, что разработкой труднодоступные месторождения невозможно [что свойственно Северу и, особенно, арктическому шельфу], поэтому в Канаде и Норвегии фиксальная система частично компенсирует дополнительные расходы. Поддерживаются также процессы по технологическому обновлению [8].

В Бореоцентре океана интересы «Газпрома» связаны с освоением одного из крупнейших в мире Штокмановского газоконденсатного месторождения. Одна ко условия разработки (средние глубины 400 – 500 метров, удалённость от берега около 600 км) требуют применения новейших инновационных решений как по добыче природного газа, так и по его транспортировке [9]. Предполагается использование технологий подводного закачивания с применением соответствующих природных модулей. Учитывая возможность появления в этом районе сейсмов, непосредственно над месторождением предполагается установка плавающей платформы с полным циклом подготовки газа к транспортировке, а также с новой системой энергетического обеспечения.

Можно отметить, что природный газ в ближайшем перспектив будет лидером роста среди всех энергетических ресурсов [10]. Однако структура глобального газового рынка стремительно меняется в связи с ростом поставок сжиженного природного газа (СПГ) по сравнению с региональными рынками трубопроводного газа. Производство СПГ явилось определённым технологическим прорывом: ещё 20 лет назад оно составляло в мировом экспорте газа всего 3%, а в 2016 году достигло 34% [11]. В перспективе, даже на европейский рынок, в связи с ненадежностью трубопроводной

Таблица 4

<table>
<thead>
<tr>
<th>Компания</th>
<th>Рейтинги</th>
<th>Объем реализации в 2016 г. млн р.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ПАО «Газпром»</td>
<td>1</td>
<td>5854</td>
</tr>
<tr>
<td>ПАО «Роснефть»</td>
<td>3</td>
<td>4122</td>
</tr>
<tr>
<td>ПАО «ГМК „Норильский никель“»</td>
<td>15</td>
<td>506</td>
</tr>
<tr>
<td>ПАО «НОВАТЭК»</td>
<td>46</td>
<td>475</td>
</tr>
<tr>
<td>ПАО «Северсталь»</td>
<td>13</td>
<td>382</td>
</tr>
<tr>
<td>ПАО «АЛК Алроса»</td>
<td>48</td>
<td>224</td>
</tr>
<tr>
<td>ПАО «ФосАгро»</td>
<td>76</td>
<td>169</td>
</tr>
<tr>
<td>ПАО «МХК Европахим»</td>
<td>54</td>
<td>166</td>
</tr>
</tbody>
</table>

Compiled by the authors based on 400 largest companies in Russia. URL: http://expert.ru/ratings/reyting-krupnejshih-kompanii-rossii-2015-po-ob_emu-realizatsii-produktovii_(reference date: 02.11.2016)

газотранспортной системы, в том числе, в связи с украинским кризисом, будет расти экспорт преимущественно сжиженного газа [12].

Лидером в этой сфере у нас выступает ПАО «НОВАТЭК», крупнейший «нефтяной» производитель природного газа в стране, который реализует в соответствии с Комплексным планом по развитию производства СПГ на полуострове Ямал [распоряжение Правительства РФ от 11 октября 2010 г. № 1713-р] проект «Ямал-СПГ» для переработки сырья Южно-Тамбейского месторождения. Проектная мощность 16,5 млн тонн, однако в марте 2016 года корпорация заявила, что продуктивность пробуренных скважин превышает ожидания и возможно строительство еще одной линии с дополнительным выпуском еще 5,5 млн т.

В том же 2016 году компания приступила к реализации в Белокаменске на Кольском полуострове своего ключевого инновационного проекта «Кольская верфь» по строительству крупнотоннажных морских сооружений с численностью персонала около 3 тыс. человек. В 2019 году в составе предприятия должны быть созданы два крупнейших в мире судов дока площадью в шесть футбольных полей каждый. «Верфь будет производить высокотехнологичные комплексы по сжижению природного газа на платформах и другое оборудование для освоения арктического шельфа.

ПАО «ГМК Норильский никель» является одним из крупнейших производителей цветных металлов в стране, добыча и переработка которых осуществляется преимущественно на полуострове Таймыр, в Красноярском крае, а основные мощности по выпуску конечной продукции находятся в Мурманской области. Компания — крупнейший мировой производитель никеля и Palladium, меди и кобальта. Наличие крупных научно-технологических центров в Санкт-Петербурге и Норильске позволяет постоянно повышать качество и конкурентоспособность продукции. Научно-технологическое подразделение «Norilsk Process Technology» расположено в Австралии. Капитализация компании в 2016 году превысила 25 млрд. долл. США.

Качество продукции и услуг компании рассматривается как одно из базовых условий обеспечения устойчивости и эффективности в долгосрочной перспективе, и для этого используют следующие факторы:

- обеспечение системы менеджмента качества требованиями международного стандарта ISO 9001 в интеграции с системой управления;
- совершенствование технологии и методов управления производством, направленное на улучшение качества продукции и услуг с одновременным снижением негативного воздействия на окружающую среду;
- обеспечение предприятия персоналом необходимой квалификации в соответствии с новыми технологическими потребителями производства, мотивация персонала на достижение текущих и стратегических целей.

Еще одно важнейшее отрасль промышленности, минерально-сырьевая база которой располагается в Арктике — производство фосфорных удобрений. Ведущими компаниями здесь выступают компании ПАО «Европхим» и ПАО «ФосАгро», при этом последние производит более 50% всей продукции отрасли в Российской Федерации. Она является крупнейшим европейским производителем фосфорных удобрений, основным мировым производителем высокосортного фосфорного сырья и вторым в мире (без учета Китая) — аммиачной селитры и диаммонийфосфата. Оценочная стоимость компании достигла в 2016 году 4 млрд. долл. при рентабельности по основным фондам свыше 20%.

Сырьевая база компании находится на Кольском полуострове и представлена Хибинской группой месторождений с запасами и резервами согласно кодексаJORC более 750 млн тонн (оценочные запасы более 2 млрд. тонн), что позволяет обеспечивать производство апатитового концентриата на текущем уровне 75 лет. Однако серьезной проблемой добывающего предприятия (АО «Апатит») является повышенные затраты на производство и снижение содержания полезного компонента в руде. В этой связи инновационная стратегия «ФосАгроУрал» ориентирована на рост технической современности и гибкости продуктовых линий, подъем энергетической эффективности производства, комплексность использования сырья с получением товарной продукции с более высокой добавленной стоимостью [13].

В составе компании функционирует крупный научно-проектный и конструкторский комплекс, который включает ООО «Горно-химический институт» и Научно-исследовательский институт удобрений и инсектицидных им. Я.В. Самойлович. Важным

1 НОВАТЭК не исключил увеличения мощности Ямал-СПГ. URL: www.vedomosti.ru/business/articles/2016/07/29/650985-rovatek/ (дата обращения: 10.05.2017)
3 «ФосАгро» — один из ведущих мировых производителей. URL: www.phosagro.ru (дата обращения: 10.05.2017)
направлением деятельности центра является модернизация мощностей по выпуску сырья для алюминиевой промышленности с ростом выпуска глиноэма в два раза. Планируется также разработка новых технологий по выпуску редкоземельных металлов из апатитового концентрата, что позволит создать стратегическое производство продукцию. Особенно учитывая, что хибинские руды содержат около 40% всех российских запасов редкоземельных элементов (около 10% мировых) [14].

Выводы

Подводя итог анализу инновационных процессов в северных регионах и корпорациях, необходимо отметить, что в специфических условиях деятельности важнейшим инструментом выступает программно-целевой подход. Он позволяет сосредоточить интересы взаимодействующих сторон, увязывая проекты по ресурсам, исполнителям и срокам. Однако, учитывая, что основные научные институты и центры находятся в федеральной собственности, необходимо усилить их целевое финансирование по особым проектам развития северных регионов и корпораций. При этом необходимо учитывать следующие основные положения:

- переход от ресурсно-экспортной модели развития экономики к инновационно-ресурсной является важнейшей задачей современного этапа, особенно учитывая усиление «санкционной» политики Запада;
- в целом регионы Севера и Арктики характеризуются ресурсно-сырьевой ориентацией, что не мешает им проявлять высокую активность в использовании передовых производственных технологий (превышает средние показатели Российской Федерации);
- расположенная повышенным спросом на современную технику и технологии, а также финансовыми ресурсами, северные регионы и корпорации могут стать своеобразными впечатляющими инновационной динамики и процессов импортозамещения;
- наиболее быстро развивающейся отраслью, с учетом тенденций мирового рынка и обеспеченности внутреннего спроса, является газопромышленный комплекс, при этом он может обеспечить ускорение индустриализации страны заказами на высокотехнологичные материалы и оборудование, особо необходимые при освоении арктического шельфа;
- важнейшими направлениями государственной поддержки инновационных процессов на Севере и в Арктике на федеральном уровне выступает поддержка исследовательского сектора, а на региональном — усиление внимания к системе общего и среднего специального образования.

Список литературы

5. Карпенко А.В., Мазур О.П. Регионы Севера – перспектива развития России. URL: http://edu.seca.ru/media/1/1/1 (дата обращения: 24.06.2015)
8. Гакрилов В.П., Лобусева А.В., Мартынов В.Г., Миронов А.В., Рыжков В.И. Стратегия освоения углеводородного потенциала Арктической зоны РФ до 2050 и далее // Территория нефтегаза. 2015. № 3. С. 39–49. URL: https://elibrary.ru/item.asp?id=23420013

Об авторах:
Селин Владимир Степанович, главный научный сотрудник отдела экономической политики и хозяйственной деятельности в Арктике и районах Крайнего Севера, Институт экономических проблем им. Г. П. Лузина Кольского научного центра (184209, Апатиты, Мурманской области, ул. Ферсмана, 24а), доктор экономических наук, профессор, Scopus Author ID: 35590748800, slin@iep.kolasc.net.ru
Цукерман Вячеслав Александрович, заведующий отделом промышленной и инновационной политики, Институт экономических проблем им. Г. П. Лузина Кольского научного центра (184209, Апатиты, Мурманской области, ул. Ферсмана, 24а), кандидат технических наук, доцент, Scopus Author ID: 6603702166, tsukerman@iep.kolasc.net.ru
Горячевская Елена Сергеевна, научный сотрудник отдела промышленной и инновационной политики, Институт экономических проблем им. Г. П. Лузина Кольского научного центра (184209, Апатиты, Мурманской области, ул. Ферсмана, 24а), Scopus Author ID: 56698387400, tsukerman@iep.kolasc.net.ru

Авторы прочитали и одобрили окончательный вариант рукописи.

References

5. Karbisheva A.V., Mazur O.P. Regions of the North — the prospect of Russia’s development. Available at: http://edu. secra.ru/media/e/ [accessed 24 June 2015] [in Russ.]

About the authors:
Vladimir S. Selin, Luzin Institute of Economic Studies of the Kola Science Centre of the Russian Academy of Sciences (24A, Fersman street, Apatity, 184209), Apatity, Russian Federation, Doctor of Economic Sciences, Professor, Scopus Author ID: 35590748800, slin@iep.kolasc.net.ru
Vyacheslav A. Tsukerman, Luzin Institute of Economic Studies of the Kola Science Centre of the Russian Academy of Sciences (24A, Fersman street, Apatity, 184209), Apatity, Russian Federation, Candidate of Technical Sciences, Associate Professor, Scopus Author ID: 6603702166, tsukerman@iep.kolasc.net.ru
Elena S. Goryachevskaya, Luzin Institute of Economic Studies of the Kola Science Centre of the Russian Academy of Sciences (24A, Fersman street, Apatity, 184209), Apatity, Russian Federation, Scopus Author ID: 56698387400, tsukerman@iep.kolasc.net.ru

All authors have read and approved the final manuscript.